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Collective experience in structure-based lead progression has found electrostatic interactions to be more
difficult to optimize than shape-based ones. A major reason for this is that the net electrostatic contribution
observed includes a significant nonintuitive desolvation component in addition to the more intuitive
intermolecular interaction component. To investigate whether knowledge of the ligand optimal charge
distribution can facilitate more intuitive design of electrostatic interactions, we took a series of small-molecule
influenza neuraminidase inhibitors with known protein cocrystal structures and calculated the difference
between the optimal and actual charge distributions. This difference from the electrostatic optimum correlates
with the calculated electrostatic contribution to binding (r2 ) 0.94) despite small changes in binding modes
caused by chemical substitutions, suggesting that the optimal charge distribution is a useful design goal.
Furthermore, detailed suggestions for chemical modification generated by this approach are in many cases
consistent with observed improvements in binding affinity, and the method appears to be useful despite
discrete chemical constraints. Taken together, these results suggest that charge optimization is useful in
facilitating generation of compound ideas in lead optimization. Our results also provide insight into design
of neuraminidase inhibitors.

Introduction

Ligand-receptor affinity is affected by shape and charge
complementarity as well as other factors including strain,
entropy, titration effects, and conformational change. Collective
structure-based drug design (SBDD) experience has found that
molecular visualization and chemical intuition are often suf-
ficient for successful optimization of shape-based hydrophobic
and van der Waals interactions, while charge-based hydrogen-
bond and salt-bridge interactions are more difficult to optimize
in the same fashion. Davis and Teague1 conclude from a large
number of SBDD case studies that optimization of hydrogen
bonds and salt bridges is unpredictable, and they advise
medicinal chemists to focus on optimizing the more predictable
hydrophobic interactions. They further point out that optimiza-
tion of electrostatic interactions may be more of an issue with
the advent of high-throughput screens, which preferentially
select lipophillic compounds that can require addition of polar
surface area for bioavailability. Thus, there is substantial need
for approaches for discovering electrostatic enhancements to
binding affinity.

The nonintuitive nature of electrostatics in ligand optimization
is largely due to the net electrostatics being composed of ligand
and receptor desolvation in addition to the intermolecular
charge-charge interaction that can be “seen” in molecular
visualization of the bound complex. While desolvation is
difficult to visualize, being a difference in properties in the
unbound and bound states, it can be calculated using continuum
electrostatic methods such as those that solve the Poisson-

Boltzmann equation.2-6 Reasonably accurate affinity estimates
with inclusion of desolvation can be calculated using these
methods, despite the positional sensitivity noted in some docking
studies.7 In applying these methods, a library of possible
analogues might be designed around a cocrystallized lead and
then prioritized computationally before synthesis of a subset,
thereby decreasing the number of compounds needing to be
made in lead optimization. However, this is an iterative trial-
and-error approach, and ideally one wants to address charge
optimization in the same fashion as shape-based optimization,
where one can see the ligand and binding pocket shapes and
design changes with moderate success.

Quantitative charge optimization techniques8,9 provide an
approach to facilitate idea generation by computing the optimal
charge distribution for a given scaffold taking into account the
ligand and receptor desolvation as well as the intermolecular
electrostatic interaction. The method has been used to design
chemical modifications to improve charge interactions.10-12

Designing synthetically feasible molecules that conform to these
optimal charges can be difficult, because discrete chemical
modifications will rarely produce the exact desired charges,12

and chemical modifications can result in shifts in the ligand
binding mode as well as ligand and receptor conformations. The
designed improvement in electrostatics must compete with
possibly unfavorable changes to the other energetic components,
which can result in unpredictable tradeoffs between electrostat-
ics, van der Waals, entropy, and conformational change as
compared to the starting co-complex structure used in the design
analysis.

Here, we examine a series of known small molecule
neuraminidase inhibitors with available co-complex structures
in a simulated lead-optimization study to understand the
behavior and utility of charge optimization in a drug discovery
setting. We ask whether adjusting a molecular charge distribu-
tion such that it more closely matches the calculated optimum
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improves the electrostatic portion of the binding affinity and
whether these changes translate to improvements in the experi-
mental binding affinity. This is a nontrivial correspondence due
to many factors, including the discrete constraints of chemistry
and minor shifts in the ligand binding mode and receptor
conformation.

Neuraminidase is an important antiviral target for influenza,
with efforts to develop inhibitors starting in the late 1960s. It
was only with the elucidation of the protein crystal structure in
198313 and SBDD efforts over the following decade that
inhibitors with therapeutically efficacious potencies were first
developed. These efforts led to the marketing of the first
approved drugs, oseltamivir and zanamivir, in 1998. We
investigate the utility of charge-optimization within the context
of neuraminidase and present analyses that may aid further
optimization and design of new inhibitors.

Methods

Structure Preparation. N9-subtype neuraminidase co-complex
structures were identified through a BLAST search of proteins in
the Protein Data Bank (PDB).14 All selected structures are atomic-
resolution structures with crystallographic resolutions in the 1.6-
2.1 Å range. Eleven receptor-ligand complex structures were used
as starting points for the neuraminidase calculations (PDB identifiers
1BJI, 1F8B, 1F8C, 1F8D, 1F8E, 1L7F, 1MWE, 1NNC, 2QWI,
2QWJ, 2QWK).15-20

Cocrystal structures were prepared using Pfizer in-house software
that automates standard protein preparation tasks. Manual prepara-
tion or publicly available tools can also be used. We specify here
our protein preparation procedure. Ends of protein regions with
missing density were capped with either an N-terminal acetyl group
or C-terminal amide group, and incomplete residues were automati-
cally built using rotamer replacement. All cofactors were removed
except the buried calcium ion that is about 11 Å from the binding
site, which was included and assigned a charge state of+2e.
Hydrogens were added to the molecules, titrated at neutral pH, and
rotationally optimized in the presence of the cocrystallized ligand
partner. Histidines were assigned the most favorable protonation
and flip states, and glutamines and asparagines were assigned their
most favorable flip states. Water molecules in the structure exposing
more than 1 Å2 of surface area to other waters or to solvent
accessible regions were removed, and the remaining crystallographic
water molecules were each rotated spherically about the oxygen
atom to optimize hydrogen-bonding networks.

The charges and radii of all receptor atoms were assigned
according to the CHARMM PARAM19 parameter set and all
ligands were assigned CHARMM PARAM19 radii.21 As a test of
parameter sensitivity, parallel calculations were run with all charges
and radii reassigned using the PARSE parameter set.22 Reference
charges for all ligands were determined using Gaussian 0323 and
the RESP procedure.24,25 Ligands were first geometry-optimized
in the gas phase using the Hartree-Fock method with the 6-31G*
basis set, and then their electrostatic potentials were calculated using
the same level of theory. Partial atomic charges for all atom centers
were then calculated using a two-stage RESP fit to these potentials.
The overall charge used for each compound was zero, except for
compounds1 and4, which were each assigned-1eoverall charge,
and3, which was assigned a+1e overall charge.16

General Electrostatic Calculations.The continuum electrostatic
approximation was used to calculate electrostatic potentials.
Calculations were made with a locally developed Poisson-
Boltzmann solver (M. D. Altman and B.T., unpublished) that uses
the finite-difference approach to solve the linearized Poisson-
Boltzmann equation26,27with a multigrid implementation.28,29These
potentials were calculated using a solvent dielectric of 80 with a
bulk ionic strength of 0.145 M, a solute dielectric of 4, and a Stern
layer of 2.0 Å.30 A molecular surface generated with a 1.4-Å radius

probe defined the dielectric boundary. The averaged results of 10
translations on a 129× 129 × 129 cubic grid were used in all
cases.

Charge Optimization. The optimal charge distribution for each
ligand was calculated by optimizing a variable point charge at each
atom center of the ligand. Charge-optimization theory, described
in detail elsewhere,8-11,31-33 enables calculation of the optimal
charge distribution for a given ligand bound to a receptor. This
distribution lies at the minimum electrostatic free energy of binding
for those atom centers, which is computed by adding the unfavor-
able desolvation penalties of both the ligand and receptor and the
favorable intermolecular interactions between the molecules. The
vector of optimal charges is a function of the receptor charges,
QR, the matrix of ligand-receptor interactions,C, and the ligand
desolvation matrix,L :

The individual partial atomic charges computed for each ligand
were constrained using LOQO34 to be no more than 1.0e in
magnitude, except in the lead progression analysis, where no atomic
charge constraints were used. Additionally, the total charge on each
ligand was constrained to be no more than 2.0e in magnitude, except
in the lead progression analysis, where no total charge constraints
were used. These constraints limit the optimization to a reasonable
charge space for medicinal chemistry. This theory has been applied
to several ligand-receptor systems, such as barnase-barstar,10

chorismate mutase,11 and granulocyte colony stimulating factor,35

as well as protein kinase A,12 CDK2,12 CDK5,36 cathepsin B,37 PSD-
95 PDZ domain,38 bovine trypsin,38 Gln-tRNA synthetase,39 and
HIV-1 gp41 ectodomain.40

Results and Discussion

For the set of N9-subtype neuraminidase inhibitors with
known cocrystal structures, we calculated both the actual ligand
atomic charges and the theoretically optimal ligand atomic
charges that would lead to the most favorable electrostatic
binding free energy for each ligand. Comparison of the reference
and optimal charges suggests nonoptimal ligand atoms and
functional groups whose modification or substitution may lead
to improved potency. One way to represent the neuraminidase
inhibitor binding pocket is to divide it into five regions41 based
on common inhibitor functional group interactions, as shown
in Figure 1A. The carboxylate at position 2 makes salt bridges
to three arginines (Arg118, Arg371, Arg292) in the S1 pocket
and is conserved in all known inhibitors. The acetamide at
position 5 making interactions in the S3 pocket is also conserved
in most inhibitors, while the substituent at position 4 occupying
the S2 pocket and the glycerol at position 6 occupying the S4
and S5 pockets can be substantially optimized, as can be seen
in Figure 2.

Electrostatic Distance from the Optimum.For each of the
11 ligands shown in Figure 2, we find that the electrostatic
component of the computed binding free energy improves with
chemical modifications that bring the charge distribution of each
molecule closer to its optimum. This distance from the optimum,
denoted∆∆Gelec

opt , is defined as the difference between∆Gelec
ref ,

the electrostatic component of the free energy of binding the
ligand with reference charges, and∆Gelec

opt , the electrostatic
component of the free energy of binding the ligand with optimal
charges. Table 1 gives these values for each of the ligands.
Experimentally measured binding affinities for the series of
small molecule inhibitors were also collected from the litera-
ture15,16,20,41,42to facilitate comparisons and aid understanding
of the tradeoffs being made in each active site between the
electrostatics and other contributors to binding.

QL
opt ) - 1

2
L-1CTQR.
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All 11 ligands have similar five- or six-membered ring
scaffolds and bind in very similar modes, as shown in Figure
1B. Even though the optimal electrostatic free energies of
binding vary in value between-4.5 and+0.2 kcal/mol, there
is good correlation (r2 ) 0.94) between the distance from the
optimum,∆∆Gelec

opt , and the reference electrostatic free energy
contribution,∆Gelec

ref (see Table 1 and Figure 3A). These results
from the full charge optimization suggest that the electrostatic
gain in binding free energy as the charge distribution of the
ligand moves closer to its optimum is significantly greater than
the amount that the electrostatics of the optimum changes due

to the new chemical structure and positioning in the active site.
The sensitivity of these results to parameter sets has been tested
by repeating all calculations using PARSE radii and partial
atomic charges (Supporting Information, Table 1). The trends
from the PARSE results track closely with the CHARMM
PARAM19 results.

The Neuraminidase Series Case Study.Full charge opti-
mization analysis of the neuraminidase substrate sialic acid is
presented in Figure 4A. The full optimization suggests sub-
stantial room for electrostatic improvement and indicates that

Table 1. Computed Optimal and Reference Electrostatic Components for Neuraminidase-Ligand Bindinga

PDB ID DL
ref DL

opt DR Iref Iopt ∆Gelec
ref ∆Gelec

opt ∆∆Gopt ∆Gexpt

1MWE 12.4 27.9 27.7 -19.0 -59.5 21.1 -4.0 -25.1 -4.1
1F8B 12.0 22.2 26.9 -15.1 -48.9 23.7 0.2 -23.5 -7.3
1F8C 16.8 24.9 27.5 -32.4 -54.5 11.9 -2.1 -14.0 -10.1
1F8D 14.2 23.8 26.4 -23.0 -50.9 17.5 -0.7 -18.2 -4.6
1F8E 25.0 25.7 27.5 -42.1 -55.4 10.3 -2.2 -12.5 -6.6
1BJI 15.8 24.7 28.3 -35.4 -53.3 8.6 -0.4 -9.0 -10.7
1L7F 16.3 29.0 28.1 -35.4 -61.6 9.1 -4.5 -13.6 -12.2
1NNC 19.5 29.7 30.8 -35.1 -63.3 15.2 -2.8 -18.0 -11.8
2QWI 17.6 25.9 27.3 -36.7 -55.9 8.1 -2.7 -10.8 -11.4
2QWJ 15.3 22.8 26.6 -35.1 -49.7 6.8 -0.3 -7.0 -9.0
2QWK 14.6 26.4 28.2 -37.0 -56.7 5.7 -2.2 -8.0 -11.8

a Energetics (kcal/mol) computed using the CHARMM PARAM19 parameter set. All experimental values contain some reported error as well as inaccuracy
related to conversions using∆G ) - RT ln(Ki or IC50). DL

ref, DL
opt, andDR are the calculated desolvation of the reference (“wild-type”) ligand, the optimal

ligand, and the receptor, respectively.Iref and Iopt are the calculated electrostatic component of the interaction energy of the reference and optimal ligands
with each receptor.∆Gelec

ref and∆Gelec
opt are the calculated electrostatic free energy of binding the reference and optimal ligands.∆∆Gopt is the distance from

the optimum as described earlier, and∆Gexpt is the experimental binding affinity, converted into kcal/mol. The IC50s for compounds 1MWE and 1L7F varied
widely over different papers and trials, so we have used an average value for 1L7F and an approximate value of 1 mM for 1MWE, following the precedence
of Taylor et al. (ref 15).

Figure 1. Common binding mode of neuraminidase inhibitors. (A)
Neuraminidase active site broken up into five regions, following the
precedence of Stoll et al.14 (B) Three-dimensional overlay of the 11
ligands used in this study based on crystal structure superposition. Main
chain atoms of the protein backbone were superposed using MOE
(version 2004.03; Chemical Computing Group, Montreal, Quebec,
Canada).

Figure 2. Chemical structures of neuraminidase N9-subtype small
molecule ligands used in this study. The PDB IDs of the relevant
cocrystal structure are given in parentheses, followed by applicable
common names.
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sialic acid (compound1) is a promising starting point for
inhibitor design given that its IC50 against neuraminidase is about
1 mM.15 With 18 of the 39 atoms in compound1 calculated to
be greater than 0.5e from the optimal overall charge distribution,
a natural question is where to begin applying chemical
modifications in order to increase binding affinity. In lead
optimization, chemical modification is often focused on a few
R groups. To understand the utility of charge optimization in
this setting, we focus on modifications at the position 2, 4, 7,
8, and 9 hydroxyl groups of compound1. The series of small
molecules deriving from compound1 increase in potency
through compounds2, 3, 4, 5, and 6, following a simulated
forward lead progression effort.

Performing charge optimization on only the R groups as a
set and comparing these optimal charges to the reference partial
charges on compound1 suggests changes to improve binding.
The group with the largest charge difference from the optimum
is the hydroxyl at position 7, where the oxygen and hydrogen
have reference charges of-0.6e and +0.4e, respectively.

Comparison with calculated optimal charges of+0.1eand-1.2e
for the oxygen and hydrogen atom positions, respectively,
suggests conversion of the hydroxyl to a more negative group.
The second largest charge differences are found on the hydroxyl
groups at positions 2 and 4, where charge optimization suggests
(1) converting the hydroxyl group at position 2 with reference
charges of-0.6eand+0.4e for the oxygen and hydrogen atoms,
respectively, to a more neutrally charged substituent with
optimal charges of about+0.2e at both positions and (2)
substituting the hydroxyl group at position 4, which has
reference charges of-0.7e and +0.4e for the oxygen and
hydrogen atoms, respectively, with a positively charged sub-
stitutent that has optimal charges of+0.4e and-0.05e at the
respective positions. At the position 9 hydroxyl group, which
has reference charges of-0.7e and+0.4e for the oxygen and
hydrogen atoms, respectively, the analysis suggests replacement
with a slightly positive group with optimal charges of+0.3e
and-0.1e at the respective atomic positions. Finally, neutral-
izing the hydroxyl group at position 8 from reference charges
of -0.7eand+0.4eat the oxygen and hydrogen atom positions
to optimal charges of-0.1e and +0.2e, respectively, is
computed to improve binding.

The suggestions at positions 2 and 9 are in some sense
incorporated into compound2, with the replacement of the
position 9 hydroxyl group with a positive amine group and
deletion of the position 2 hydroxyl group. Other modifications
are possible that closely match the optimal charge distribution,
including, for instance, alkyl substitutions. However, the actual
favorable changes are along the lines of the charge optimization
suggestions, indicating that charge optimization provides a useful
guide. Although the greatest charge differences between refer-
ence and optimal are not found at positions 2 and 9, modifica-
tions consistent with the optimal charge distribution at these
positions do contribute to a more potent compound with a
measuredKi of 400µM. The change in bond order and resulting
change in stereochemistry at the 2-position carbon is not
accounted for in the calculation of the optimal charges, although
comparing the two cocrystal structures (1MWE and 1F8D)
shows that these changes do not substantially change the position
and conformation of the molecule (see Figure 1B). Analysis of
compound2 suggests converting the hydroxyl group at position
7 to a negatively charged substituent, converting the hydroxyl
group at position 4 to a positive group, and converting the
hydroxyl at position 8 to a neutral or slightly positive group.
These three suggestions are nearly identical to those found for
compound1. The group at position 9 is now closer to the
electrostatic optimum, as can be seen in Figure 4B, although
the analysis suggests that bringing the group closer to neutral
can improve binding.

Compound3 can be derived from compound2 by conversion
of the 4-position hydroxyl group to a protonated amine as
shown, appearing to satisfy one of the charge optimization
suggestions and resulting in a 27-fold improvement in affinity.
The amine at position 4 has an overall charge of+0.6e and is
very close to the calculated optimal overall charge of+0.5e
for the group. A closer look at the atomic charges, however,
suggests that the reference charges of-0.3e for the nitrogen
and+0.3e for each of the three hydrogens on the amine would
more optimally be inverted so that the nitrogen position has a
charge of+0.4e and the hydrogens have charges of-0.1e,
+0.1e, and+0.1e. This charge inversion would decrease the
desolvation penalty while a similar electrostatic interaction
energy would be maintained, because the overall charge would

Figure 3. Electrostatic contributions to ligand binding relative to
electrostatic differences from the optimum and experimentally measured
binding affinities. (A) Scatter plot of the differences from the optimal
charge distribution,∆∆Gopt, versus calculated electrostatic component
of the binding affinity,∆Gelec

ref , for the 11 ligands. (B) Scatter plot of
calculated electrostatic components,∆Gelec

ref , versus experimentally
measured binding affinities,∆G ) -RT ln(Ki or IC50), for the 11
ligands. Free energy terms are defined and discussed in the text. Positive
values of∆Gelec

ref and ∆G represent unfavorable net contributions to
binding affinity, while negative values represent favorable contributions.
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be the same but the exterior atomic positions would be less
charged. Unfortunately, this change appears chemically difficult.

The hydroxyl group at position 7 is still suboptimal in
compound3, as is, to a lesser degree, the hydroxyl group at
position 8. At the position 7 hydroxyl group, substitution of
reference charges of-0.6e and +0.4e at the oxygen and
hydrogen positions, respectively, with “inverted” optimal charges
of +0.04e and-0.7e is predicted to increase binding affinity.
One idea that is consistent with the charge optimization
suggestion is conversion of the hydroxyl to a carbonyl. An
interesting alternative approach to realizing the optimal distribu-
tion is found in compound6. The hydroxyl group at position 7
is deleted, and in the cocrystal structure (PDB ID 2QWK), a
crystallographic water molecule sits near where the hydroxyl
group sat in compound3. The water hydrogen likely sits at the

hydroxyl oxygen position, thereby satisfying the calculated
optimal charge distribution. The ether oxygen of compound6
probably makes a hydrogen bond to the water in 2QWK and
could thus play an important role in stabilizing the water’s
position. The crystallographic water is not seen in cocrystal
structures with compounds1-5. This analysis together with
the ether being calculated to be nearly optimal in compound 6
(see Supporting Information, Figure S1) suggests a contributory
role for the crystallographic water.

The 4-fold increase inKi in moving from compound3 to
compound4 is not explained by the charge-optimization results,
suggesting that other contributions are responsible for the
increase in potency. Other studies have pointed out difficulties
in explaining the structure-activity relationship (SAR) between
compounds3 and 4,43 and possible explanations include

Figure 4. Structure-activity relationship analysis in a subset of neuraminidase ligands showing the suggested charge modifications for each
compound. (A) Unconstrained optimization as described in the Methods for 1MWE. (B) Optimization of only the R groups. For each ligand, all
groups in boxes were optimized together without constraints. The magnitude of the difference between the real and optimal charge for each atom
is depicted by the size and color of the circle centered on each atom, as shown in the box in the upper right corner. Larger differences are indicated
by larger circles, and circles are colored blue if the optimal charge is more positive and red if it is more negative. Numbers given in the key are
in units of electron charge, and charge differences less than 0.15e are not shown.

2474 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 8 Armstrong et al.



differences in binding site protonation states,16 differences
between binding states in low-temperature crystallographic and
room-temperature assay conditions,43 and differences in internal
strain contributions to binding.44 Compound4 has most of the
same R groups as compound1, with the difference being the
removal of the hydroxyl group at position 2 and a change in
bond order, as described previously. The difference between
the reference and optimal charges at the four R groups is
essentially the same as found in compound1, except for at the
hydroxyl group at position 7, where the group is significantly
closer to the optimum (see Figure 4B). The optimal charge
distribution with-0.7eand+0.04eat the oxygen and hydrogen,
respectively, is closer to the reference charges of-0.6e and
+0.4e, respectively, than found with compound1. The optimal
charge distribution appears to be more sensitive than the
reference charge distribution to the modifications in moving
from compound1 to 4.

Compound4 is electrostatically suboptimal at four positions;
the hydroxyl group at position 4 should be more positive, the
hydroxyl groups at positions 8 and 9 should be neutral, and the
hydroxyl group at position 7 should be negative, if the optimal
distribution is used as a guide. In compound5, an amine replaces
the position 4 hydroxyl, and the modification, which is consistent
with the first suggestion, results in a 100-fold increase in
potency. The overall charge on the amine at position 4 is now
+0.53e and is very close to the overall charge of+0.55e found
from optimization. Optimal charges for the hydroxyl groups at
positions 8 and 9 of compound5 are both approximately neutral
at +0.1e, while the optimal charges for the hydroxyl group at
position 7 is as described above for compound3. Making the
hydroxyl groups at positions 8 and 9 neutral by conversion to
alkyl groups along with other changes (see Figure 4B) results
in compound6, which further improves the affinity 200-fold.
The change at position 7, described in detail above, appears to
involve a crystallographic water. The central ring is also
modified, though this change was not made as much for SAR
reasons as it was for chemical stability and versatility reasons.45

Results of full optimization of compound6 (see Supporting
Information) suggest that the R groups are close to their charge
optimum, while further charge optimization is possible on the
central scaffold.

Application of Charge Optimization in Lead Progression.
Medicinal chemistry optimization of neuraminidase inhibitors
has focused on the five sites as defined in Figure 1A, and it is
interesting to note that compound6 has a nearly optimal charge
distribution at all of these sites, suggesting that lead optimization
in this case corresponds to charge optimization. Charge opti-
mization does not provide modifications per se and partly
requires chemical intuition to design actual substitutions that
satisfy the computed optimal charge distribution. However, it
does appear to retrospectively explain the structure-activity
relationships seen in the series of neuraminidase inhibitors. Two
potential lessons can be taken from this study. The first is that
strong suggestions do result in substantial inhibitor potency
improvements. On the other hand, slight modification of charges,
such as those suggested for compound6 R groups, may in
practice be difficult to make given discrete chemical constraints.
A second lesson suggested by the data here is that individual
optimizations of these subsites are relatively independent from
one another. A lead progression analysis, where all atoms of
each ligand were optimized simultaneously, suggests changes
to parts of the molecule that are “fixed” in the analysis here
(shown in Supporting Information, Figure S1). Even so, the
suggested changes to the variable subsites coincide very well

with those suggested in Figure 4B. Likewise, when each of these
subsites is optimized individually instead of as a set (shown in
Supporting Information, Figure S2), the suggested changes
coincide very well with those presented here.

One arising question is whether charge optimization must be
applied in a sequential step basis. Comparison of compounds1
and6 suggests that the recommended modifications are largely
applicable despite small changes such as the rotation of
Glu276.45 In addition, because optimization of these groups is
largely independent, changes could potentially have been made
concurrently to improve affinity. However, the magnitudes of
the charge optimization suggestions do change as we follow
the series, as seen in Figure 4B, indicating that the subsites are
not completely independent. Since each chemical modification
shifts the charge distribution of the entire molecule, and because
each ligand sits in the active site in a slightly different
conformation, it is likely that charge optimization will be most
useful when applied sequentially. In a drug discovery team
setting, we envision that a computational chemist applies this
method to cocrystal structures of leads and works with a
medicinal chemist in finding suitable replacements according
to charge optimization suggestions. Quantitative charges for R
group replacements can be computed using the RESP methodol-
ogy (see Methods) before synthesis. In this way, visualization
and chemical intuition facilitates optimization of charge-based
hydrogen-bond and salt-bridge interactions in a fashion similar
to what is possible with shape-based interactions.

Conclusion

The trends associated with the neuraminidase ligands exam-
ined here indicate that in a polar active site, calculation of the
electrostatic optimum of a ligand can help to suggest useful
chemical modifications that generally improve the overall
binding affinity. Small modifications in the neuraminidase
ligands cause their charge distributions to move significantly
with respect to their optima, and the modifications result in large
changes in overall binding affinities. These changes are not only
due to electrostatics, however. As shown in Figure 3B, the
electrostatic component of the free energy of binding does not
dominate the total binding affinity. Therefore, the van der Waals,
entropy, and molecular strain changes that occur with each new
ligand overpower, in some cases, the electrostatic effects in
determining the final binding affinity. Because the active site
of neuraminidase is quite polar, these effects are not expected
to decrease in other targets.

Despite this, charge optimization can be a useful tool, because
it can be used to make and evaluate molecular modifications.
Charge optimization can suggest useful changes to a molecule
in lead progression that consistently improve the electrostatic
portion of the binding affinity. We note that neuraminidase is
a challenging drug target, and over three decades were required
to find a compound that was potent enough for physiological
interference. In comparison, inhibitors binding in more hydro-
phobic pockets, such as those found in kinases and other
“drugable” targets, can often be progressed in terms of potency
without the aid of cocrystal structures, suggesting that while
medicinal chemists can intuitively optimize compounds that are
driven by van der Waals packing, it is much more difficult to
electrostatically optimize compounds, and computational analy-
sis such as that presented here can be particularly useful in these
cases. Pharmaceutical lead progression involves optimization
of properties other than potency, such as selectivity and ADME
profiles, requiring multifactorial optimization and decision-
making. Because charge optimization provides intuitive direc-
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tion, it can be incorporated into human generation of compound
ideas that balance these various requirements.
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